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PROBLEM 1 

Score: a+b =6+6=12 

 

A container with a volume of 1.0 dm3
 contains 2.0 ∙ 1023  He atoms. The temperature of 

the He gas is 54.4 K. You can assume that the He behaves like an ideal gas. 

 

Given: MHe = 4.0 g mol
-1, MO2 = 32.0 g mol

-1. 

 

a) Determine the gas pressure.  

b) Draw a sketch of the Maxwell distribution. Roughly approximate in an oxygen gas the 

fraction of O2 molecules that have molecular speeds in the range between 1500 m s-1 

and 1600 m s-1 when the temperature is 300 K.   

 

 

PROBLEM 2 

Score: a+b+c=5+5+5=15 

Consider a hypothetical engine which connects two (infinite) reservoirs and undergoes the 

following reversible processes: 

i. isothermal expansion at temperature 𝑇ℎ  

ii. adiabatic expansion to temperature 𝑇𝑐   
iii. isothermal compression at temperature 𝑇𝑐   

iv. adiabatic compression to the initial state  

 

In every cycle, a quantity of heat 𝑄𝑖𝑛 flows from reservoir A into the engine and a quantity 

of heat 𝑄𝑜𝑢𝑡 flows from the engine into the reservoir B.  

 

a) Sketch the thermodynamic cycle in a (𝑇,𝑆)-diagram. Indicate where the entropy of the 

engine changes and how these changes relate to the entropies of reservoirs A and B.  

b) Use entropy arguments to show, that the efficiency of the cycle equals 𝜂 = 1 − 𝑇𝑐/𝑇ℎ.  

c) The coal power plant in Eemshaven produces about 12 TWh of electricity per year from 

about 3 million tons of coal (thermal energy content of coal: 9 kWh kg-1). Determine 

the efficiency of the power plant and estimate 𝑇𝑐 and 𝑇ℎ assuming the power plant is an 

idealized Carnot engine. Is the result for 𝑇ℎ realistic? Estimate the efficiency of a 

primitive steam engine (use realistic numbers) and compare. 

 

  



PROBLEM 3 

Score: a =6 

 
 The thermal diffusion equation for a sphere can be written as, 

 
𝜕𝑇

𝜕𝑡
= 𝐷

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑇

𝜕𝑟
) 

 

if there is no dependence on the angular coordinates. In this equation 𝑟 is the radial 

coordinate, 𝐷 is the diffusion coefficient and 𝑇 is the temperature. 

 

a) Give a general solution for 𝑇 for the steady state case.  
 

 

PROBLEM 4 

Score: a+b=6+6=12 

 

Typical turbomolecular pumps can generate a vacuum of about 1·10-10 bar. Assume the 

pump to be at 𝑇 = 25° 𝐶 and working on a gas primarily consisting of N2 molecules.  

a) Calculate the mean free path of the molecules and the collision frequency.  

b) Do the molecules that pass the turbomolecular pump have the same Maxwell 

Boltzmann distribution of speeds that the gas in the vacuum chamber has? (Hint: 

assume that the pump has a diameter of 10 cm. Use the result for the mean free path to 

argue.)  If the answer is no, what speed distribution do these molecules have? 

 

Collision diameter N2: 395 pm.  

  



PROBLEM 5 

Score: a+b+c =5+4+4=13 

 

A 2-dimensional lattice is in equilibrium with a heath bath at temperature 𝑇. The lattice has 

𝑁 × 𝑁 lattice positions (see figure). On this lattice there are two distinguishable particles 

𝐴 and 𝐵 that can freely move over the lattice positions. In the situation that the particles 

are at the same lattice position the energy of the system of two particles is – 𝜀; in the 

situation that the particles are at different lattice positions this energy is zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) How many possibilities (microstates) are there to place the two particles on the lattice? 

How many of these microstates have energy −𝜀 and how many have energy zero. 

b) Give the general expression of the partition function 𝑍 when you sum over all different 

energies of a system. Use this to show that the partition function 𝑍 for the system of 

the two particles on the lattice is: 

 

𝑍 = 𝑁2(𝑁2 − 1 + 𝑒𝛽𝜀) 

 

c) Use this partition function to calculate the internal energy 𝑈 of the system of the two 

particles on the lattice. 
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PROBLEM 6 

Score: a+b+c=6+6+5=17 

 

The Berthelot equation of state is given by: 

 

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−
𝑎

𝑇𝑉2
 

 

in which 𝑃, 𝑉, 𝑇 are the pressure, the molar volume and the temperature of the gas, 

respectively. The constant 𝑎 controls the attractive molecular interactions and the constant 

𝑏 corrects for the volume of the gas molecules. 

 

a) Calculate the second virial coefficient 𝐵(𝑇) of the Berthelot gas. 

b) Calculate the Boyle temperature 𝑇𝑏 of the Berthelot gas.  

 

A crude model for the intermolecular potential is the square well potential. Suppose that 

for a certain real gas (not necessarily a Berthelot gas) we have the following square well 

potential 𝑣𝜅,𝑅,𝜀(𝑟) describing the interaction between two molecules as a function of their 

separation distance 𝑟: 
 

𝑣(𝑟) = ∞;          0 < 𝑟 ≤
𝑅

𝜅
 

𝑣(𝑟) = −𝜀;       
𝑅

𝜅
< 𝑟 ≤ 𝑅 

𝑣(𝑟) = 0;           𝑟 > 𝑅 

 

with 𝜅 a dimensionless constant such that 𝜅 > 1, 𝜀 has the units of energy and the radius 

𝑅 is expressed in units of length.  

 

c) Calculate the second virial coefficient 𝐵(𝑇) (per mole) for a real gas with such a square 

well potential  𝑣𝜅,𝑅,𝜀(𝑟). Express your answer in terms of 𝑅, 𝜀, 𝜅 and 𝛽. 

 

  



PROBLEM 7 

Score: a+b+c =6+5+4=15 

 

Consider a one-atom layer thick square (with sides of length 𝐿) of metallic atoms. The 

square consists of 𝑁 atoms of which each atom contributes exactly two electrons to the 

total amount of conduction electrons. These conduction electrons can be considered as a 

2D ideal gas of fermions with spin 
1

2
 enclosed in a square with area 𝐴 = 𝐿2. 

 

a) Show that number of states Γ(𝐸) with energy smaller than 𝐸 for this 2D gas of fermions 

is proportional to 𝐸: 

Γ(𝐸) =
𝐴𝐸

𝜎
 

 

with 𝜎 a constant. Give an expression for 𝜎 in terms of fundamental constants. 

 

Use the expression for Γ(𝐸) to show that the density of states 𝑔(𝐸)𝑑𝐸 for this 2D ideal 

gas of electrons is independent of energy and can be written as: 

 

𝑔(𝐸)𝑑𝐸 =
𝐴𝑑𝐸

𝜎
 

 

We now cool the square of metallic atoms to temperature 𝑇 = 0. 

 

b) Calculate the Fermi energy 𝐸𝐹 for this 2D ideal gas of electrons. Express your answer 

in 𝑁, 𝐴 and 𝜎. 

c) Show that at 𝑇 = 0 the internal energy of this gas is given by 𝑈 = 𝑁𝐸𝐹 . 

 

 

  



Solutions 

PROBLEM 1 

a) 

𝑝𝑉 = 𝑁𝑘𝐵𝑇 

 

𝑝 =
𝑁𝑘𝐵𝑇

𝑉
=
2 × 1023 × 1.38 × 10−23

J
K⁄ × 54.4 K

10−3m
≈ 150 kPa 

 

b) 

 

 

 

 

 

 

 

𝑓(𝑣) =
4

√𝜋
(
𝑚

2𝑘𝐵𝑇
)

3
2⁄

𝑣2𝑑𝑣 𝑒
−
𝑚𝑣2

2𝑘𝐵𝑇 

 

 

𝑚 =
0.032 kg mol−1

𝑁𝐴
≈ 5.3 × 10−26kg 

 

𝑓(1550 ms-1) =
4

√𝜋
(
5.3 ∙ 10−26kg

2𝑘𝐵300 K
)

3
2⁄

(1050 ms-1)2𝑑𝑣 𝑒
−
5.3∙10−26kg(1050 ms-1)

2

2𝑘𝐵300K  

 

≈ 1.2 ∙ 10−4 sm-1𝑑𝑣 

 

Δ𝑣 = (1500 − 1600)ms-1 = 100 ms-1 
 

The fraction is approximately 0.012%.  
 

 

 

 

 

 

 

 

  



PROBLEM 2 

a)    

  

Entropy changes in the isothermal steps i) and iii) (heat flows to keep 𝑇 constant). 

Adiabatic means no heat flow, i.e. no entropy change. 

∆𝑆𝐴 = ∫
𝑑𝑄

𝑇ℎ
=
∆𝑄

𝑇ℎ
=
𝑄ℎ
𝑇ℎ

 

 

∆𝑆𝐵 =
𝑄𝑐
𝑇𝑐

 

 

b)      ∆𝑆ℎ = ∆𝑆𝑐 

𝑄ℎ
𝑇ℎ
=
𝑄𝑐
𝑇𝑐

 

𝜂 =
𝑊

𝑄ℎ
=
𝑄ℎ − 𝑄𝑐
𝑄ℎ

= 1 −
𝑄𝑐
𝑄ℎ
= 1 −

𝑇𝑐
𝑇ℎ

 

c)   

𝜂 =
12 TWh

3 ∙ 109kg × 9 kWh kg−1
≈ 0.44 

The cooling water is liquid water from outside the plant (e.g. the sea), let’s say 𝑇𝑐 = 300 K. 

𝜂 = 1 −
𝑇𝑐
𝑇ℎ

 

𝑇ℎ ≈
𝑇𝑐

0.56
= 535 K 

This is for an idealized Carnot process. The actual temperatures are much higher! 

Steam engine: Th=100oC=373K, Tc=50 oC=323K, 𝜂 = 1 −
𝑇𝑐

𝑇ℎ
≈ 0.1 



 

PROBLEM 3 

a) 

𝐷
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑇

𝜕𝑟
) = 0 

𝑟2
𝜕𝑇

𝜕𝑟
= 𝑐𝑜𝑛𝑠𝑡 

𝑇(𝑟) = 𝐴 +
𝐵

𝑟
 

 

 

PROBLEM 4 

a) 

𝜆 =
1

√2𝑛𝜎
 

 

𝑛 =
𝑁

𝑉
=
𝑝

𝑘𝐵𝑇
=

1 × 10−5Pa

1.38 ×
10−23J
K × 298 K

≈ 2.4 × 1015m−3 

𝜎 = 𝜋 × (395 × 10−12)2 = 4.9 × 10−19m2 

𝜆 =
1

√2 × 2.4 × 1015m−3 × 4.9 × 10−19m2
= 601 m 

 

This is huge, because of the low pressure, molecules essentially do not collide with each 

other in a normal-sized container. 

 

b)  Despite the macroscopic diameter of the pump, we are dealing with effusion rather than 

with a regular Maxwell-Boltzmann distribution, simply because the mean free path is large 

as compared to the diameter of the opening. 

  



PROBLEM 5 

a)  

Total number of microstates: 𝑁 × 𝑁 possibilities for the first particle times 𝑁 × 𝑁 

possibilities for the second particle gives 𝑁4 microstates. The number of microstates with 

energy 𝐸 = −𝜀 is equal to the number of lattice positions: 𝑁2. The number of microstates 

that have energy 𝐸 = 0 is 𝑁4 −𝑁2 = 𝑁2(𝑁2 − 1). 
 

b) 

General expression for the partition function: 

 

𝑍 =∑𝑒−𝛽𝐸𝑟

𝑟

 

 

where the summation is over all microstates 𝑟 or 

 

𝑍 =∑𝑔(𝐸𝑟)𝑒
−𝛽𝐸𝑟

𝐸𝑟

 

 

where the summation is over all different energies 𝐸𝑟 and 𝑔(𝐸𝑟) is the degeneracy of the 

energy 𝐸𝑟 (number of microstates with that energy). 

 

For the system of the two particles on the lattice: 

 

𝑍 = 𝑁2𝑒−𝛽(−𝜀) + 𝑁2(𝑁2 − 1)𝑒−𝛽0 = 𝑁2(𝑁2 − 1)+𝑁2𝑒𝛽𝜀 = 𝑁2(𝑁2 − 1 + 𝑒𝛽𝜀) 

 

c) 

We use 𝑈 = −
𝜕 ln𝑍

𝜕𝛽
 and find, 

 

𝑈 = −
𝑁2𝜀𝑒𝛽𝜀

𝑁2(𝑁2 − 1)+𝑁2𝑒𝛽𝜀
=

−𝜀𝑒𝛽𝜀

(𝑁2 − 1) + 𝑒𝛽𝜀
 

  



PROBLEM 6 

 

a)  

Rewrite the Berthelot equation as: 

 
𝑃𝑉

𝑅𝑇
=

1

(1 −
𝑏
𝑉)
−

𝑎

𝑅𝑇2𝑉
 

and expand the first term on the right-hand side in powers of 
1

𝑉
: 

 

𝑃𝑉

𝑅𝑇
= (1 +

𝑏

𝑉
+ (
𝑏

𝑉
)
2

+⋯) −
𝑎

𝑅𝑇2𝑉
⇒ 

 
𝑃𝑉

𝑅𝑇
= 1 + (𝑏 −

𝑎

𝑅𝑇2
)
1

𝑉
+⋯ 

 

Thus, 

𝐵(𝑇) = 𝑏 −
𝑎

𝑅𝑇2
 

 

b)  

The temperature at which the second virial coefficient is zero is called the Boyle 

temperature. 

𝐵(𝑇) = 0⇒ 𝑏 −
𝑎

𝑅𝑇2
= 0⇒ 𝑇𝑏 = √

𝑎

𝑏𝑅
 

 

At this temperature Boyle’s law (𝑃𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) approximately holds for a real gas. 

 

 

 

c) 

 

𝐵(𝑇) =
𝑁

2
∫(1 − 𝑒−𝛽𝑣(𝑟))𝑑3𝑟

=
𝑁

2
∫ 4𝜋𝑟2𝑑𝑟

𝑅
𝜅

0

+
𝑁

2
∫(1 − 𝑒𝛽𝜀)4𝜋𝑟2𝑑𝑟

𝑅

𝑅
𝜅

+
𝑁

2
∫ 0 ∙ 4𝜋𝑟2𝑑𝑟

∞

𝑅

⇒ 

 



𝐵(𝑇)

𝑁
= 2𝜋∫ 𝑟2𝑑𝑟

𝑅
𝜅

0

+ 2𝜋(1 − 𝑒𝛽𝜀)∫ 𝑟2𝑑𝑟

𝑅

𝑅
𝜅

+ 0

=
2𝜋

3
((
𝑅

𝜅
)
3

+ (1 − 𝑒𝛽𝜀) (𝑅3 − (
𝑅

𝜅
)
3

))⇒ 

 

 

𝐵(𝑇)

𝑁
=
2𝜋

3
(𝑅3 − 𝑒𝛽𝜀 (𝑅3 − (

𝑅

𝜅
)
3

)) =
2𝜋

3
𝑅3 (1−𝑒𝛽𝜀 (

𝜅3 − 1

𝜅3
)) 

 

  



PROBLEM 7 

a)  

From the solution of the 2D-wave equation: 𝜑 = 𝐴 sin 𝑘𝑥𝑥 sin 𝑘𝑦𝑦 and taking this function 

to vanish at 𝑥 = 𝑦 = 0 and at 𝑥 = 𝑦 = 𝐿 results in, 

 

𝑘𝑥 =
𝑛𝑥𝜋

𝐿
  and  𝑘𝑦 =

𝑛𝑦𝜋

𝐿
  with 𝑛𝑥 and 𝑛𝑦 non-zero positive integers. 

 

The total number of states with |𝑘⃗ | < 𝑘 is then given by, (the area of a quarter circle 

because we have only positive integers, with radius 𝑘 divided by the area of the unit surface 

e.g. the surface of one state, in 𝑘-space). 

Γ(𝑘) =

1
4𝜋𝑘

2

(
𝜋
𝐿)
2 =

1

4

𝐿2𝑘2

𝜋
 

Converting to energy  𝑝 = √2𝑚𝐸 = ℏ𝑘 we find, 𝑘 =
√2𝑚𝐸

ℏ
 and 𝑑𝑘 =

1

2

2𝑚

ℏ√2𝑚𝐸
𝑑𝐸 

We find, 

 

Γ(𝐸) =
1

4

𝐿2𝑘2

𝜋
=
1

4

𝐿2

𝜋

2𝑚𝐸

ℏ2
=
1

2

𝐴

𝜋

𝑚𝐸

ℏ2
 

 

For fermions with spin 
1

2
 we have two spin states thus, 

 

Γ(𝐸) = 2 ×
1

2

𝐴

𝜋

𝑚𝐸

ℏ2
=
𝐴

𝜋

𝑚𝐸

ℏ2
=
𝐴𝐸

𝜎
 

 

Thus, 𝜎 =
𝜋ℏ2

𝑚
 

 

The number of states between 𝐸 + 𝑑𝐸 and 𝐸 is: 

 

𝑔(𝐸)𝑑𝐸 =  Γ(𝐸 + 𝑑𝐸) − Γ(𝐸) =
𝜕Γ

𝜕𝐸
𝑑𝐸 =

𝐴𝑑𝐸

𝜎
 

 

 

b) 

The Fermi energy is the value of the chemical potential 𝜇 at absolute zero temperature: 

 

𝐸𝐹 = 𝜇(𝑇 = 0) 
 

Total number of fermions is given by, 

 



2𝑁 = ∫ 𝑛(𝐸)

∞

0

𝑔(𝐸)𝑑𝐸 

with, 

𝑛(𝐸) =
1

𝑒𝛽(𝐸−𝜇) + 1
 

 

the mean number of fermions with energy 𝐸 (Fermi-Dirac distribution) 

 

Thus, 

2𝑁 =
𝐴

𝜎
∫

𝑑𝐸

𝑒𝛽(𝐸−𝜇) + 1

∞

0

 

 

And at 𝑇 = 0, we have 𝐸𝐹 = 𝜇(𝑇 = 0) and thus 𝑛(𝐸) = 1  if 𝐸 < 𝐸𝐹  and 𝑛(𝐸) = 0  if 
𝐸 > 𝐸𝐹. Thus, 

 

2𝑁 =
𝐴

𝜎
∫ 𝑑𝐸 =

𝐸𝐹

0

𝐴

𝜎
𝐸𝐹 ⇒ 𝐸𝐹 =

2𝑁𝜎

𝐴
 

c) 

𝑈 = ∫ 𝐸𝑛(𝐸)

∞

0

𝑔(𝐸)𝑑𝐸 =
𝐴

𝜎
∫

𝐸𝑑𝐸

𝑒𝛽(𝐸−𝜇) + 1

∞

0
𝑇=0
⇒  𝑈 =

𝐴

𝜎
∫ 𝐸𝑑𝐸 =

𝐸𝐹

0

𝐴

2𝜎
𝐸𝐹
2 = 𝑁𝐸𝐹 

 


